Diskreetne Matemaatika
K I R J A L I K   K O D U T Ö Ö
2 0 2 0
    päevased   õpperühmad    

  tagasi

KIRJALIK KODUTÖÖ   ANNAB VÄIKSE OSA EKSAMIHINDEST

Aine IAX0010 hinne koosneb kolmest osast:
  • Moodle' testid annavad kuni 10 hindepunkti
  • kirjalik kodutöö annab kuni 10 hindepunkti
  • eksam (jaanuaris) annab kuni 80 hindepunkti

    EKSAMIEELDUS
    IAX0010 eksamile pääsemiseks on vaja:
    —   saada Moodle' testide eest vähemalt 5 punkti;
    ja
    —   kirjalik kodutöö peab olema   arvestatud   (olenemata kodutöö eest saadud punktidest);

    Õppeaines IAX0010 tuleb teha ja vormistatult esitada üksainus mitmeosaline kodutöö, mille tähtaeg on detsembris.
    Kodutöö põhineb ühel konkreetsel osaliselt määratud 4-muutuja loogikafunktsioonil.
    Igal üliõpilasel on oma loogikafunktsioon.

    Tea peast oma ÜLIÕPILASKOODI !

    Jäta meelde oma üliõpilaskood (selle 6 numbrit) — mida võidakse mõnes kohas nimetada ka "matriklinumbriks".
    (oma õpilaskoodi teadmine on vajalik ka tulevikus :  ära mõtlegi, et jääd seda kuskilt "maha vaatama" läbi kõikide õppeaastate . . . )

    1. Leia oma õpilaskoodile (ehk "matriklinumbrile") vastav  4-muutuja loogikafunktsioon.
    Selle saamiseks toimida järgnevalt:
    — käivitada Windowsi Calculator     ( CALC.EXE )   ja määrata talle seaded   View-Programmer   ja   Dec (kümnendsüsteem)   ja   Qword:

     

    — sisestada lahtrisse oma matriklinumbri 5 viimast numbrit: näiteks 71234   (pildil on suvalise arvutusnäite alustamiseks 5 asemel 6 numbrit:  135678  —   kuid oma arvutust alustad siiski 5-kohalisest arvust alates)
    kui tudengikoodi koosseisus (alguses või lõpus) sisaldub lisaks numbritele ka tähti, siis tähed tuleb ärajätta.
    2020:   1.kursuse tudengikoodid algavad 20...... —   mis tähendab, et  "5 viimast numbrit"  algavad seega 0-ga.   Alguse 0 ei mõjuta arvutust - ehk 2020 sisseastujate jaoks rakendub efektiivselt ainult neli viimast tudengikoodi numbrit.
    Seega võivad 2020 sisseastujad arvutada oma loogikafunktsiooni ka 4 viimase koodinumbri järgi — mis annab sama tulemuse nagu ka 5 viimast numbrit.

    — lülitada kalkulaator ümber 16ndsüsteemile (Hex).  

    Kalkulaator hakkab näitama eelnevalt sisestatud matriklinumbrit 16ndkujul   ( pildil:  211FE).

    — kalkulaatoris näidatava 16ndarvu 7-ga korrutamiseks vajutada järjest  *  ja  7  ning järgnevalt võrdusmärki  =  korduvalt, kuni näidatav 16ndarv kasvab 7-kohaliseks:

    Pildilolevas näites tuleb võrdusmärki vajutada 3 korda, et jõuda 7-järgulise 16ndarvuni 2C61B52
    NB! Võrdusmärki vajutades tuleb olla tähelepanelik. Õige on esimene tekkiv 7-kohaline 16ndarv.
    Kui   =märki vajutada hooletult 1....2 korda vajalikust rohkem, siis võib ka üleliia korrutatud 16ndarv olla endiselt 7-kohaline — kuid ta on genereeritava funktsiooni jaoks juba vale!

    Saadud 16ndarv võib sisaldada numbrimärke   0 1 2 3 4 5 6 7 8 9 A B C D E F   kus 16ndnumbrid A B C D E F omavad väärtusi:
    A = 10
    B = 11
    B = 11
    C = 12
    D = 13
    E = 14
    F = 15
    Saadud 16ndarvu 7 järguväärtust 0 . . . 15 määravad loogikafunktsiooni 1-de piirkonna. Korduvaid järguväärtusi ehk numbrimärkide topeltesinemisi (siin näites: number 2) tuleb ignoreerida.
    Pildilolevas näites olev korrutamistulemus (7-kohaline 16ndarv 2C61B52) määrab 4-muutuja loogikafunktsiooni 1de piirkonna (numbrilises 10ndesituses):
    1   2   5   6   11   12
    (kuna numbreid 2 on selles 16ndarvus mitu, siis arvestame teda ühekordselt)


    Määramatuspiirkonna leidmine:
    — eelkirjeldatud viisil toimides saadud ja hetkel kalkulaatoris näidatava 16ndarvu (siin näites: 2C61B52) tuleb korrutada 7-ga veel niimitu korda, kuni arv kasvab 9-järguliseks — ehk tuleb vajutada järjest   =-märki veel paar korda,  kuni 16ndarv kasvab 9-kohaliseks:

    NB!   Kui kalkulaator näitab / vahetab ekraanil ainult kuni  8-järgulisi 16ndarve  ning iialgi ei jõua 9-kohalise arvuni, siis on kalkulaatoris kehtimas vaikimisi andmepikkus WORD.
    Leia kalkulaatoris koht, kus saab käskida / klikkida kehtima  QWORD, misjärel numbri pikkus kasvab ka suuremaks kui 8 hex-numbrit.

    Võtta tuleb korrutamisel esimesena tekkiv 9-kohaline 16ndarv!
    9-kohalise tekkinud 16ndarvu (siin näites: 3B76E9ADE ) need järguväärtused 0 . . . 15, mis ei kuulu juba 1-de piirkonda, moodustavad funktsiooni määramatuspiirkonna.
    Pildilolevas näites on määramatuspiirkond seega:   3    7    9    10    13    14      kuna   6  ja   11 (B)    kuuluvad juba 1-de piirkonda.
    Korduvaid numbreid arvu koosseisus (siin: E ehk 14) arvestame jällegi ühekordselt.


    Ülejäänud arvud vahemikus 0....15 (mis puuduvad nii 1de piirkonnas kui ka määramatuspiirkonnas) moodustavad 0de piirkonna.
    Siin näites jäävad 0de piirkonna arvudeks:   0   4   8   15 (ehk F)

    Seega oleks matriklinumbrile 135678 vastav 4-muutuja loogikafunktsioon oma numbrilises 10ndesituses:

    pane tähele:   iga konkr. arv   0 . . . 15   saab alati olla ainult ühes piirkonnas.
    veelkord täpsustuseks:   Te ei pea võtma mitte SEDASAMA ülalnäidatud funktsiooni, vaid tuleb arvutada oma matriklinumbrist alustades   ja ülaltoodud toimingud läbides   OMA loogikafunktsioon.
    Eelnev näidisfunktsioon oleks õige ainult matriklinumbri 135678 omanikule.

    Näitefunktsiooni tõeväärtustabel on:


    2.  Esitada oma loogikafunktsiooni (eelnevalt genereeritud) numbriline 10ndesitus ja tõeväärtustabel

    Lahendatavad ülesanded

    3.  Leida MDNK ja MKNK, mis sobiksid matriklinumbrist leitud osaliselt määratud 4-muutuja funktsiooni esitamiseks.

    Paarisarvulise matriklinumbriga / tudengikoodiga üliõpilased leiavad   MDNK Karnaugh' kaardiga  ja  MKNK McCluskey' meetodiga.
    (0 on samuti paarisarv)
    Paarituarvulise matriklinumbriga / tudengikoodiga üliõpilased leiavad   MKNK Karnaugh' kaardiga  ja  MDNK McCluskey' meetodiga.
    Leitud MDNK ja MKNK ei pea olema teineteisega võrdsed ehk määramatuspiirkonna tohib MKNK ja MDNK leidmisel jaotada ("lõpuni määrata") erinevalt ehk teineteisest sõltumatult.
    Kui funktsioonil juhtub olema mitu erinevat minimaalset normaalkuju, siis leia / kirjuta välja tema  kõik minimaalsed normaalkujud. Olles leidnud mitu erinevat MDNK-d või mitu erinevat MKNK-d, vali nendest edaspidiste ülesannete jaoks välja üks suvaline  MDNK ja MKNK  selle funktsiooni esindajaks.
    Järgnevad ülesanded  töötlevad seda ühte MDNK ja MKNK avaldist, mille oled vabalt valinud  oma funktsiooni esindajaks.
    . . . enamus juhuslikke funktsioone omab ühtainust MDNK ja ühtainust MKNK — seljuhul "vabalt valida" pole midagi . . .

    4.  
    Esita eelmises punktis leitud / (lahendiks valitud) MDNK jaoks tema  tõeväärtustabel.
    Esita eelmises punktis leitud / (lahendiks valitud) MKNK jaoks tema  tõeväärtustabel.
    Tuvastada, kas leitud / (lahendiks valitud)   MDNK ja MKNK  on teineteisega loogiliselt võrdsed või mitte.
    Kui nad pole võrdsed, siis esitada lühike selgitus, miks nad pole võrdsed.
    Pärast MDNK leidmist / valimist   ja   MKNK leidmist / valimist   —   on kõik järgnevad tegevused ainult nendega. Algne  osaliselt määratud  loogikafunktsioon enam vajalik pole.

    5.  Teisendada punktis 3 leitud MKNK   loogikaalgebra põhiseaduste abil DNK-kujule   (ehk korrutada MKNK avaldises "sulud lahti" ja lihtsustada tekkiv DNK käsitsi).
    Võrrelda selle teisenduse tulemuseks olevat DNK-d   punktis 3 leitud MDNK-ga — kas MKNK-st teisendatud DNK on (avaldisena) kokkulangev selle MDNK-avaldisega, mille andis punktis 3 kasutatud minimeerimismeetod? (Karnaugh' kaart või McCluskey' meetod)

    Kui MKNK-st "käsitsi" teisendatud (lihtsustatud) DNK   pole   punktis 3 saadud MDNK-ga kokkulangev avaldis, siis tuleb edasi kontrollida, kas mõlemad võrreldavad DNK-avaldised on omavahel loogiliselt võrdsed.
    DNK-avaldiste võrdsuse (mittevõrdsuse) üle otsustamiseks tuleb arvutada mõlemale tema tõeväärtustabel.

    Kui DNK-de tõeväärtustabelite võrdlus kinnitab analüüsitavate DNK-avaldiste omavahelist loogilist võrdsust, siis tuleb siiski leida ja esitada teisendus, mis teisendaks MKNK-st saadud DNK   (punktis 3 saadud) MDNK-avaldiseks.
    (See teisendus eksisteerib kindlasti, kui võrreldavad DNK-avaldised on loogiliselt võrdsed.)

    Kui tõeväärtustabelite võrdlus näitab analüüsitavate DNK-avaldiste mittevõrdsust, siis tuleb esitada (mõnelauseline) lühiselgitus, miks nad pole võrdsed.
    (pane tähele — eelkirjeldatud tõeväärtustabelite väljakirjutamist ja võrdlemist tuleb DNK-dele teha ainult juhul, kui punktis 3 leitud MKNK ei teisendunud (sulgude lahtikorrutamisel-lihtsustamisel) punktis 3 leitud MDNK-ga täpselt kokkulangevaks DNK-avaldiseks)

    6.   Leida vabaltvalitud viisil   punktis 3 saadud MDNK-ga (loogiliselt) võrdne Taandatud DNK ja Täielik DNK, näidates (selgitades) mõlema jaoks ära ka nende leidmisviisi.

    Mitte unustada, et nii Täielik DNK kui ka Taandatud DNK peavad mõlemad olema loogiliselt võrdsed punktis 3 saadud   MDNK-ga  (ehk nad peavad määramatuspiirkonna "lõpuni määrama" samamoodi nagu MDNK seda teeb.
    Kui MDNK osutus mitte 4-, vaid 3- või 2-muutuja funktsiooniks, siis täieliku DNK esitamisel pole vaja mitteolulisi muutujaid avaldisse "tagasi panna" — ehk TDNK võib siis samuti olla 3- või 2-muutujaga avaldis.

    7.   Leida vabaltvalitud viisil   punktis 3 saadud MKNK-ga (loogiliselt) võrdne Täielik KNK.

    Ka siin jälgida, et TKNK peab olema loogiliselt võrdne punktis 3 saadud   MKNK-ga  (ehk ta peab määramatuspiirkonna "lõpuni määrama" samamoodi nagu MKNK seda teeb).
    Kui MKNK osutus mitte 4-, vaid 3- või 2-muutuja funktsiooniks, siis täieliku KNK esitamisel pole vaja mitteolulisi muutujaid avaldisse "tagasi panna" — ehk TKNK võib siis samuti olla 3- või 2-muutujaga avaldis.

    8.   Teha punktis 3 saadud MDNK-le Shannoni disjunktiivne arendus selle muutuja (muutujate)   x i   järgi, mida esineb MDNK-s kõige rohkem.

    Shannoni arendused on oluline esitada kujul, kus jääkfunktsioonid on (nende lihtsaimal kujul) avaldises ära näidatud. Sellest kujust "edasi" pole vaja Shannoni arenduse avaldist enam teisendada (kuna edasine tekkiv avaldis poleks enam Shannoni arendus).

    Kui MDNK-s pole ükski muutuja   x i   kõigi ülejäänud 3me suhtes esinemise poolest ülekaalus, siis teha disjunktiivne arendus mitme muutuja   x i   järgi   —   nende 2he või 3me muutuja järgi, mida leidub MDNK-s omavahel võrdselt ja ülejäänutest rohkem.
    Kui kõik 4 muutujat   x 1   x 2   x 3   x 4   on MDNK-s võrdselt esindatud, siis teha MDNK-le täielik Shannoni disjunktiivne arendus.
    Kui punktis 3 saadud MDNK avaldisekuju juba osutubki (sobib) Shannoni disjunktiivseks arenduseks 1 muutuja järgi, siis piisab (disj. arenduse esitamiseks) jääkfunktsioonide äranäitamisest MDNK-s, eraldades nad sulgudesse

    9.
    paarituarvulise tudengikoodi omanikud :   Teha punktis 3 saadud / valitud  MDNK-le  Shannoni 2-muutuja disjunktiivne arendus muutujate x1 ja x3 järgi.
    paarisarvulise tudengikoodi omanikud :   Teha punktis 3 saadud / valitud  MDNK-le  Shannoni 2-muutuja disjunktiivne arendus muutujate x2 ja x4 järgi.

    Kui mingi muutuja nendest on mitteoluline, siis sellise mitteolulise muutuja järgi ei ole vaja arendust teha.   Seljuhul saab arendus olema 1-muutuja arendus.
    Kui punktis 7 juba tehti Shannoni disj. arendus just 2 muutuja järgi, siis tuleb siin teha MDNK arendus 1 muutuja järgi, valides selle ühe muutuja vabalt.

    10. 
    paarisarvulise tudengikoodi omanikud :
    Leida punktis 3. MDNK-na saadud loogikafunktsioonile tema jääkfunktsioon muutuja   x2 = 0   korral   ja esitada see jääkfunktsioon 8-realise tõeväärtustabelina.
    Leida punktis 3. MDNK-na saadud loogikafunktsioonile tema jääkfunktsioon muutuja   x4 = 1   korral   ja esitada see jääkfunktsioon MDNK-na.   (Kui jääkfunktsioon on juhtumisi konstant, siis ka MDNK on lihtsalt seesama konstant).   MDNK võib leida suvalisel meelepärasel viisil.

    paariturvulise tudengikoodi omanikud :
    Leida punktis 3. MDNK-na saadud loogikafunktsioonile tema jääkfunktsioon muutuja   x1 = 1   korral   ja esitada see jääkfunktsioon 8-realise tõeväärtustabelina.
    Leida punktis 3. MDNK-na saadud loogikafunktsioonile tema jääkfunktsioon muutuja   x3 = 0   korral   ja esitada see jääkfunktsioon TDNK-na ( täielik DNK).   TDNK võib leida suvalisel meelepärasel viisil.

    Kui see jääkfunktsioon on juhtumisi konstant 0, siis võta seisukoht: kas tema TDNK eksisteerib või mitte? Kui see jääkfunktsioon on juhtumisi konstant 1, siis mitu liiget (mitu elementaarkonjunktsiooni) on tema TDNK-s?
    Kui 4 muutujaga isiklik loogikafunktsioon (leitud MDNK) sisaldas mitteolulisi muutujaid, siis mitteoluliste muutujate väärtustamise kaudu jääkfunktsioone leida pole vaja — vastav jääkfunktsioon võib jääda leidmata.
    Jääkfunktsiooni tohib leida suvalisel meelepärasel viisil, ka Karnaugh' kaardi abil.

    11. 
    paarituarvulise tudengikoodi omanikud :
    Leida ja esitada punktis 3 saadud MDNK jaoks tema tuletis muutuja   x1   järgi. Tuletiseks olev avaldis lihtsustada DNK-ks loogikaalgebra põhiseoste abil.
    Leida ja esitada punktis 3 saadud MDNK jaoks tema tuletis muutuja   x3   järgi. Tuletiseks olev avaldis lihtsustada DNK-ks loogikaalgebra põhiseoste abil.

    paarisarvulise tudengikoodi omanikud :
    Leida ja esitada punktis 3 saadud MDNK jaoks tema tuletis muutuja   x2   järgi. Tuletiseks olev avaldis lihtsustada DNK-ks loogikaalgebra põhiseoste abil.
    Leida ja esitada punktis 3 saadud MDNK jaoks tema tuletis muutuja   x4   järgi. Tuletiseks olev avaldis lihtsustada DNK-ks loogikaalgebra põhiseoste abil.
    ( kõikide   jääkfunktsioonide leidmine   peab olema äranäidatud )
    Kui MDNK osutus vähem kui 4 muutujaga funktsiooniks, siis MDNK-s puuduvate muutujate järgi tuletist leida pole vaja
    Tuletist tohib leida ka Karnaugh' kaardi abil, näidates ära lahenduskäigu koos tuletisfunktsiooni kaardiga.

    12.  Leida ja esitada punktis 3 saadud MDNK-ga loogiliselt võrdne Reed-Mulleri polünoom.
    Polünoomi võib leida omavalitud meelepärase meetodiga
    Leitud polünoomi jaoks arvuta ja esita tema  tõeväärtustabel.

    Vormistus

    Kuigi kodutöö mustand kirjutatakse / lahendatakse tavaliselt käsitsi / kirjalikult paberil, siis tähtaegselt ja esimesel hilinemisnädalal esitatakse vormistatud kodutöö (novembris-detsembris)   Moodle' keskkonnas dokumendifaili üleslaadimisega.
    Arvutis võib kodutöö olla kirjutatud suvalise omavalitud editoriga.
    Dokumendifaili kõige eelistatum formaat on .PDF. Vormistades kodutöö dokumendifaili (näiteks) Microsoft Word tekstiredaktori kaasaegse versiooniga, salvesta lõplik kuju mitte tema "tavalise" .docx failiformaadina, vaid käsuga   Save as type . . .   PDF
    Kirjutades muude editoridega (mis ei oska "otse" salvestada .PDF failiks) — saab arvuti tarkvarast olenevalt   .PDF dokumendifaili genereerida ka muude vahenditega.
    Sobivad ka kõik muud tuntud failiformaadid   ( .docx   .odt   . . . ) , kuid nende muude formaatide läbivaatamine võib tehnilistel põhjustel jääda järjekorras hilisemaks kui .PDF-ide läbivaatamine.   Et mitte jääda kodutöö tulemuste teadasaamisel viimaste hulka, püüa esitada kodutöö   .PDF-ina.
    .PDF korral on ka faili suurus väiksem, misjuhul Moodle' 2MB failisuuruse piirang jääb kõige tõenäolisemalt ületamata.
    Kõik muud failiformaadid (peale .PDF-i) on alternatiividena saadaval eelkõige nendele, kes millegipärast ei suuda oma arvutis tekitada kodutöö lõppvarianti   PDF-kujul.
    Teine "muude formaatide" probleem :   neid näitavad täpselt õigesti ainult need editorid, millega nad kirjutatud on. Esitades kodutöö dokumendi failiformaadis mis pole .PDF ,   võivad seal kontrollimisel vastu vaadata sellised "vead", mida autori enda jaoks tema editoris tegelikult (näha) polnud.
    Valides salvestamisel failinime, pane esitatava faili nime sisse ka oma nimi — nii et juba failinimest oleks arusaada, kelle töö see on.

    Hilinenud kodutööd esitatakse paberil

    Enam kui 9 päeva hilinenud kodutöö esitatakse A4 paberitel köidetuna   —   kuna Moodle' ei võta siis enam failide üleslaadimisi vastu.
    Paberil esitatud vormistus tohib olla nii arvutidokumendi väljatrükk kui ka käsikirjas lahendused A4 paberitel.
    Käsikirjas lahenduste korral peab tiitelleht olema ikkagi printeriga prinditud.
    Paberil esitatud kodutöö saab   arvestatud   alles pärast edukat kaitsmist jaanuaris.

    Kodutöö TULEMUS

    Eksamile pääsemiseks peab saama kodutöö arvestatuks.
    Korrektselt vormistatud tähtaegne kodutöö loetakse reeglina arvestatuks ilma täiendava kaitsmiseta ja ta lisab kuni 10 punkti eksamihinde punktiarvestusse.
    arvestatud kodutöö ei tähenda, et seal   k õ i k   oli õige.

    Kui tähtaegne kodutöö on tema esmasel hindamisel saanud tulemuseks / staatuseks :   arvestatud, siis selline töö annab kuni 10 hindepunkti ja ta ei pea kaitsmist läbima.

    Millisel juhul tuleb failina esitatud kodutöö ka PABERILE PRINTIDA ?

    Kui kaitsmisele määratakse failina ehk Moodle's esitatud kodutöö, siis kaitsmisele ilmudes tuleb kodutöö printida paberile (koos tiitellehega) — ja tuleb võtta kaitsmisele kaasa.
    Kaitsmiseelselt tohib soovikorral teha ka oma töös parandusi / muudatusi — näiteks tohib äraparandada vigu, mille on autor ise oma dokumendifailis esitamisjärgselt avastanud.
    Olles ise avastanud (kaitsmisele määratud) töös vigu, tasub kaitsmisele tulla parandatud lahendused kaasas. Samuti võib tulla ka muutmata kujul kodutööga, mis on kaasavõtmiseks lihtsalt paberile prinditud.
    Soovikorral võib kaitsmisele kaasa võtta ka käsikirjas lahendusi paberil   —   näiteks autori enda poolt avastatud vigu äraparandavad uued lahendused.
    Kaitsmisel tuleb kohapeal õigeks parandada ainult need vead, millest tuleb kaitsmisel juttu.
    Kui esitasid kodutöö mitte failina vaid pabervormistusena   —   siis kaitsmisvajaduse korral ei pea tööd teistkorda paberile printima.
    Ilmudes jaanuaris kaitsmisele, on esitatud kodutöö seal juba olemas.

    Kodutöö KAITSMINE

    Enam kui 9 päeva hilinenud kodutöö määratakse kaitsmisele  (olenemata ta sisust / õigsusest)  ja ta saab arvestatuks pärast edukat kaitsmist jaanuarikuus.
    Tähtaegne või vähem hilinenud kodutöö määratakse kaitsmisele, kui selle kohta tahetakse esitada küsimusi ja/või kui seal esineb selliseid vigu, mis tuleb autoril õigeks äraparandada.
    Kaitsmisele määratud kodutööd saavad arvestuse alles pärast edukat kaitsmist või puuduste kõrvaldamist.
    Kaitsmised toimuvad jaanuaris, alates jaanuari esimestest päevadest.
    Moodle's failina esitatud / üleslaaditud ning järgnevalt kaitsmiselemääratud kodutöö (koos tiitellehega) peab autor printima A4 formaadis paberile ja see tuleb võtta kaitsmisele kaasa. (tohib printida ka kahepoolselt)
    Lubatud on ka valge korrektormarkeriga parandused ja kirjutusvahendiga täiendused paberil.
    Kodutöö võib kirjutada ja esitada ka käsikirjas A4 paberitel  (köidetult ja tiitellehega), misjärel kodutöö peab läbima kaitsmise olenemata esitamiskuupäevast.
    Kuigi lahendused tohivad paberil kodutöös olla ka käsikirjas, siis tiitelleht peab olema printeril prinditud — ka siis, kui ülejäänud töö sisu on käsikirjas.

    Tiitelleht

    Nii failina kui ka paberil esitatud kodutöö peab algama tiitellehega.
    Tiitellehel peab olema lehe paremas ääres üliõpilase nimi , rühm ja matriklinumber — muid kujunduslikke nõudmisi tiitellehe kohta pole.

    Pabervormistuse KÖITMISVÕIMALUSED

    . . . . kui tähtaegne või (vähe)hilinenud  (Moodle's esitatud) töö on saanud  arvestatuks, siis sellist tööd ei pea paberile printima (ega ei pea kaitsma) . . . .
    Kui töö esitatakse enam kui 9-päevase hilinemisega  (ehk Moodle' vastuvõtu sulgumisest hiljem), siis saab teda esitada ainult paberil.
    Kui Moodle's esitatud töö on määratud kaitsmisele   —   siis samuti peab töö printima A4 paberitele.
    Moodle'sse esitamata jätnud hilinejad võivad ka käsitsi lahendada kõik ülesanded vahetult A4 paberitele, ilma arvutivormistuseta.   Selline käsikirjas kodutöö peab läbima kaitsmise.

    Pabervormistuse jaoks on 2 köitmisvõimalust, millest vaja ise vabalt väljavalida üks võimalus :
    A4 lehed peavad olema kokku köidetud klambrilööjaga (ühe klambriga lehtede vasakus ülaservas)
    VÕI
    lahtised (klambriga kinnitamata) A4 lehed tohib panna õiges järjekorras A4 läbipaistvasse õhukesse kiletaskusse, tiitelleht kõige pealmisena nähtavaks.

    "Kiletaskuks" ei kõlba need plastümbrised, kus neljast servast 2 serva on avatud.   Sobivatel kiletaskutel on ainult 1 serv neljast servast "avatud" ja ülejäänud 3 serva on "suletud". Sellisest kiletaskust ei libise paberilehed ise välja.
    Kui oled valinud kiletaskus esitamise, siis seljuhul ära kinnita paberilehti samaaegselt ka klambrilööjaga !
    Lahtisi paberilehti vastu ei võeta:   klambrilööjaga kinnitus (üheainsa klambriga lehe vasakus ülaservas) VÕI läbipaistev A4 kiletasku on vajalik.
       
    Kodutöö faili (Moodle' jaoks) võib saavutada ka pildistades käsikirjas paberitele kirjutatud lahendusi fotokaga või telefoniga, misjärel editoris (MS Word või mistahes muu editor) tohib .JPG-pildid paigutada dokumendi lehekülgedeks: üks suur pilt katmas A4 lehekülge.
    Seljuhul vaja jälgida, et kujutise lõplik suurus ja kvaliteet A4 lehekülgedel oleks piisavalt hea: selge ja terav ja kontrastne - ehk arusaadavalt nähtav / loetav.  
    Lehekülgede kujutised võib saada arvutisse ka pabereid skanneriga skannides, misjuhul skannimise resolutsioon DPI   võiks olla seadistatud madalaks, et paberite piltkujutised ei tuleks asjata liiga suured.
    Kuigi piltkujutised vähenevad editoris visuaalselt jälle lehekülje suurusteks, siis liigsuurte piltide korral tuleb kodutöö faili suurus (megabaitides) liiga suur.
    Kodutöö üleslaaditav dokumendifail tohib olla (Moodle' piirangu kohaselt) kuni 5 MB (?)
    Paberit pildistades või skaneerides — peab sealne käsikirjas lahendus olema ilma mahatõmbamisteta / sodimisteta.

    Tähtaeg

    sügissemestril:
    Kodutööde esitamise tähtaeg (päevastel rühmadel) on   neljapäev   10. detsember.
    Kodutöö dokumendifailide tähteagne esitamine Moodle's on avatud 29. novembrist kuni 10. dets. õhtuni
    ja
    Moodle' "järelesitamine" on avatud 11.detsembrist kuni 19. detsembri õhtuni, kusjuures:

    kuni   N 10. detsembrini esitatud kodutöö võib saada kuni 10 hindepunkti;
    R 11. detsembril esitatud kodutöö võib saada kuni 9 hindepunkti;
    L 12. detsembril esitatud kodutöö võib saada kuni 8 hindepunkti;
    P 13. detsembril esitatud kodutöö võib saada kuni 7 hindepunkti;
    E 14. detsembril esitatud kodutöö võib saada kuni 7 hindepunkti;
    T 15. detsembril esitatud kodutöö võib saada kuni 6 hindepunkti;
    K 16. detsembril esitatud kodutöö võib saada kuni 6 hindepunkti;
    N 17. detsembril esitatud kodutöö võib saada kuni 5 hindepunkti;
    R 18. detsembril esitatud kodutöö võib saada kuni 5 hindepunkti;
    L 19. detsembril  (ja sellest hiljem paberil)  esitatud kodutöö võib saada kuni 4 hindepunkti;

    Faili  (järel)esitamise lõpupäeval  (L  19. dets. õhtul)   Moodle-üleslaadimine sulgub automaatselt — millele järgneb kodutöö "hilinenud esitamine paberil":   pabervormistuste esitamine ICT-maja välisukse juures postkasti ARVUTISÜSTEEMIDE INSTITUUT.
    Üle 9 päeva hilinenud  (ja seega ainult paberipealse esitusvõimalusega)  kodutööd saavad kohe oma staatuseks: kaitsmisele   ja ilmuvad kaitsmiselemääratud tööde nimekirjas   (www.diskmat.ee)
    Üle 9 päeva hilinenud kodutööd  peavad läbima kaitsmise  ja võivad saada kuni 4 hindepunkti.
    Esitades kodutöö jaanuaris, tuleb ta tuua postkasti vähemalt 1 päev enne väljavalitud kaitsmispäeva.
    Kaitsmisajad ilmuvad jaanuaris   www.diskmat.ee

    Meenutame, et eksamieeldus koosneb (lisaks kirjalikule kodutööle) ka Moodle' testide (vähemalt) pooltest punktidest :   5 punkti.

    Avastasin esitamisjärgselt vea oma töös — kas saan parandada, esitades Moodle's faili veelkord ?

    Olles oma kodutööd õigemaks redigeerinud   —   ava Moodle's veelkord esitamise link ja uuri, kas saad esitada faili ühekorra veel.

    Moodle lubab asendada üleslaetud kodutööd seni, kuni ta on olekus "draft".

    Üleslaaditud kodutöö saab esmalt oma staatuseks "draft", milles ta võib olla palju päevi.   Nende päevade jooksul  on võimalik uue üleslaadimisega senist esitust asendada.
    ! draft ei ole   ä r a e s i t a t u d   kodutöö !
    Hoides oma üleslaaditud kodutööd Moodle's mingi aja staatuses draft, on vaja enne tähtaja saabumist ta siiski äraesitada   [ESITA TÖÖ HINDAMISELE]   nupuvajutusega.
    NB! pane tähele, et lõpliku äraesitamise "nupp"   [ESITA TÖÖ HINDAMISELE]   võib olla Moodle' veebilehel "liiga all", ekraanipildi "serva taga" nähtamatu.
    Kruvi / scrolli   kodutöö äraesitamise Moodle' veebileht allapoole lõpuni!
    Info esitatud tööde arvestustulemuste kohta hakkab olema nii Moodle's kui ka siinsamas (www.diskmat.ee) tabelis.

    Kodutööde kaitsmised toimuvad jaanuari algusest alates.
    Kaitsmisajad ja -koht teatatakse   www.diskmat.ee   avalehel.

    . . . . küsimuste korral sobib   e-mail . . . .
    Ära esita õpetajale küsimusi ega teateid   Õppeinfosüsteemi ( ÕIS ) ega   Moodle kaudu. Need jõuavad kohale suure hilinemisega — kunagi kauges tulevikus.
    Mistahes pöördumiseks sobib eelkõige   "tavaline" e-mail.
    . . . . avastades vastuolusid   Moodle'  ja  www.diskmat.ee   tekstides . . .       . . . siis õige on   www.diskmat.ee   info

                                          
       tagasi

    H. Lensen
      hl@cc.ttu.ee