KARNAUGH' KAARDID

Karnaugh' kaart on funktsiooni tdevaartustabeli sihipérane
topoloogiline Umberpaigutus tasandil vdi ruumis.

Tdevadrtustabeli igale reale (ehk funktsiooni

igale argumentvektorile) vastab kaardil ks ruut.
Maurice Karnaugh

Karnaugh' kaartide topoloogia

2—-muutuja Karnaugh' kaart on tabel médtmetega 2 x 2 (vbi 1 x 4) ruutu ;
3—-muutuja Karnaugh' kaart on tabel médtmetega 2 x4 = 8 ruutu;
4-muutuja Karnaugh' kaart on tabel médtmetega 4 x4 = 16 ruutu:

(2* = 16 rida on ka 4-muutuja loogikafunktsiooni tdevaartustabelis )

2 - muutuja
Karnaugh' kaart

3 - muutuja
Karnaugh' kaart

4 - muutuja
Karnaugh' kaart

2—, 3— ja 4—-muutuja kaardid on 2-mo6dtmelised ehk tasandilised.
5- ja 6-—muutuja kaardid on 3-modtmelised ehk ruumilised.

5-muutuja Karnaugh' kaart on tabel médtmetega 2 x4 x4 = 32 ruutu:
(2° = 32 rida on ka 5-muutuja funktsiooni tdevaartustabelis )
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5-muutuja Karnaugh' kaart

6—muutuja Karnaugh' kaart on tabel médtmetega 4 x4 x4 = 64 ruutu :
(2° = 64 rida on ka 6-muutuja funktsiooni tdevaartustabelis)




6 - muutuja Karnaugh' kaart

Karnaugh' kaartide péhiomadused
Karnaugh' kaardil on 2 pdhiomadust.

1. péhiomadus

kaardi iga ruudu naaberruutude arv vordub kaardi muutujate arvuga

Seega:

2—muutuja Karnaugh' kaardi igal ruudul on 2 naaberruutu ;
3—muutuja Karnaugh' kaardi igal ruudul on 3 naaberruutu ;
4-muutuja Karnaugh' kaardi igal ruudul on 4 naaberruutu ;
5-muutuja Karnaugh' kaardi igal ruudul on 5 naaberruutu ;
6—muutuja Karnaugh' kaardi igal ruudul on 6 naaberruutu ;
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~? mitu naaberruutu oli eespool erinevate suurustega kaartidel ?

6—muutuja kaart on suurim Karnaugh' kaart.

7—muutuja kaarti ei eksisteeri, sest 3-mddtmelise ruumi véimalused on
6—muutuja kaardiga ammendatud ehk ruudu 7ndat naabrit pole ruumis enam
kuhugi paigutada.

Argumentvektorite paiknemine kaardi ruutudes

Kaardi igale ruudule vastab toevaartustabeli Uks rida ehk funktsiooni (ks
argumentvektor (milleks on mingi n—jarguline 2ndvektor).

2. p6hiomadus

‘ suvalise kahe naaberruudu argumentvektorid on teineteise ldhiskoodid ’

( meenutame et, lahiskoodid on kahendvektorid, mis erinevad teineteisest

ainult Ghes oma kahendjargus )
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4-muutuja Karnaugh' kaart
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Kontuurid

(2-muutuja kaart on praktikas ebaoluline)
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5-muutuja Karnaugh' kaart
( kolmem@datmeline !')
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Karnaugh' kaardil valitakse vélja kindlate md6tmetega ruutude gruppe, mida
nimetatakse kontuurideks.

Tasandilise kaardi kontuurid on ristkilikud lubatud kiljepikkustega

QuisaV. o omy o yutu,

2-modtmelise Karnaugh' kaardi kontuuride koikvdimalikud suurused :
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vaatame veelkord 2-muutuja kaarte :
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" 6-muutuja Karnaugh' kaart

( kolmemad6étmeline )

2m x 2"

3-mdodtmelise Karnaugh' kaardi kontuuride vdimalikud suurused :

2 - muutuja

Karnaugh' kaart

2 - muutuja

Karnaugh' kaart

" ?....agakuidas paiknevad muutujad XiX 2-muutuja kaardil ?

1x1x1 ruutu
1x1x2 ruutu
1x1x4 ruutu
1x2x1 ruutu
1x2x2 ruutu
1x2x4 ruutu
Axdx4 rut
kuigika 8 = 2" =23 siis: ...




Seega pole Karnaugh' kaardi kontuurideks ruutudegrupid kiiljepikkusega
3 ruutu. Ulejaanud voimalikud kiljepikkused (mis tldse mahuvad kaardile)

on kontuuridel lubatud.

Niisiis osutuvad kontuuride voimalikeks kiljepikkusteks 1 2 ja 4 ruutu.
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tldpiline viga:
kontuuri kiiljepikkus pole kunagi 3 ruutu !
(s.t. kaardil ei tohi valida sellist kontuuri, mille mistahes kiljepikkus on 3)
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6 - muutuja Karnaugh' kaart :
kontuuri kuljepikkus "8 ruutu" ei mahu isegi suurimale kaardile
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Kontuuride seos intervallidega

meenutame :
2ndvektorite teatud kindlate tunnustega hulka nimetatakse intervalliks.
Karnaugh' kaardi iga kontuur vastab kahendvektorite mingile intervallile:
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suvalised kontuurid ja nendele vastavad intervallid

mistahes kontuuri koosseisu kuuluvatele ruutudele vastavad
argumentvektorid / 2ndvektorid moodustavad intervalli.

Karnaugh' kaardi piirkonnad

kuna iga muutuja X saab omada kahte vaartust, siis




n-muutuja kaardil on 2n omavahel kattuvat piirkonda (ruutude gruppi):

X1=0 X1=1 X2=0 X2=1 ..... Xn=0 Xn=1

kaardi piirkondi vOib t&histada vastavalt:

X1 X1 X2 X2 oo Xn Xn

Jargmisel joonisel on ndidatud 3-muutuja kaardi kdik 6 piirkonda
(igathe suurus on 4 ruutu) ja
4-muutuja kaardi kdik 8 piirkonda (kusiga piirkond on 8-ruuduline):
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Karnaugh' kaardi piirkonnad

Piirkondade suurus

Iga piirkond on tapselt ""pool kaarti"* suur ehk tema koosseisu kuuluvad
(suvalise kaardi korral) tapselt pooled kaardi kdikidest ruutudest.

Piirkonnad kattuvad omavahel.
Kaardi iga ruut kuulub pooltesse selle kaardi piirkondadesse

Loogikafunktsioonide minimeerimine

Loogikafunktsiooni minimeerimine on tema esitamine minimaalse
keerukusega (ehk algtermide vahima véimaliku arvuga) normaalkujul —

Minimaalsel Disjunktiivsel NormaalKujul (MDNK)
VoI Minimaalsel Konjunktiivsel NormaalKujul ( MKNK)

Loogikafunktsioone v6ib minimeerida nende avaldise teisendamisega
loogikaalgebra pdhiseoseid ja loogikatehete asendusseoseid kasutades.

Loogikafunktsiooni minimeerimine KARNAUGH' KAARDI abil

Loogikafunktsiooni minimeerimine on tema esitamine minimaalse
keerukusega normaalkujul — Minimaalsel Disjunktiivsel NormaalKujul
(MDNK) vdi Minimaalsel Konjunktiivsel NormaalKujul (MKNK).

Loogikafunktsioone v6ib minimeerida (nagu varem tegimegi) nende avaldise
teisendamisega loogikaalgebra pohiseoseid ja loogikatehete asendusseoseid
kasutades. Voimalusekorral on eelistatum teha seda siiski Karnaugh' kaardi
abil.

Loogikafunktsiooni minimeerimine on Karnaugh' kaardi pohiline
rakendusvaldkond.

Karnaugh' kaart on kdige eelistatum "késitsi” minimeerimisvahend, kuid ta
on rakendatav ainult kuni 6-muutuja loogikafunktsioonide korral.

meenutame :
OSALISELT maaratud loogikafunktsioon

Loogikafunktsioon on osaliselt maaratud kui osade argumentvektorite jaoks
on jaetud lahtiseks, kumba loogikavaartuse peab funktsioon nende korral
omandama.

Sellised argumentvektorid on funktsiooni maaramatuspiirkonnaks.

Seega voib loogikafunktsioonidel olla olemas :

0-de piirkond

1-de piirkond

maaramatuspiirkond — kus vaartus tohib olla "lkspuha™ kumb, kas 1 v6i 0

?

mida tehakse maaramatuspiirkonnaga ?

méaéramatuspiirkond "méaaratakse alati I6puni” ehk jaotatakse dra 0-de ja
1-de piirkonna vahel

ehk teiste sdnadega:

osaliselt maaratud funktsioonilt minnakse alati tle taielikult maaratud
funktsioonile.




Loogikafunktsiooni vdib "l6puni maarata” ka meelevaldselt / juhuslikult,
kuid enamasti tasub seda teha sihipéraselt — misjuhul saavutame talle
"esindajaks” lihtsaima véimaliku loogikaavaldise.

Olles "mé&aranud I6puni™ mingi osaliselt m&aratud funktsiooni,
oleme talle valinud esindajaks the tdielikult m&aratud funktsiooni .

Taielikult méaratud funktsioon on vaadeldav osaliselt maaratud funktsiooni
erijuntumina, kus méaramatuspiirkond puudub.
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